15,110 research outputs found

    Z_p scalar dark matter from multi-Higgs-doublet models

    Full text link
    In many models, stability of dark matter particles is protected by a conserved Z_2 quantum number. However dark matter can be stabilized by other discrete symmetry groups, and examples of such models with custom-tailored field content have been proposed. Here we show that electroweak symmetry breaking models with N Higgs doublets can readily accommodate scalar dark matter candidates stabilized by groups Z_p with any p≤2N−1p \le 2^{N-1}, leading to a variety of kinds of microscopic dynamics in the dark sector. We give examples in which semi-annihilation or multiple semi-annihilation processes are allowed or forbidden, which can be especially interesting in the case of asymmetric dark matter.Comment: 10 page

    Minkowski space structure of the Higgs potential in 2HDM

    Get PDF
    The Higgs potential of 2HDM keeps its generic form under the group of transformation GL(2,C), which is larger than the usually considered reparametrization group U(2). This reparametrization symmetry induces the Minkowski space structure in the orbit space of 2HDM. Exploiting this property, we present a geometric analysis of the number and properties of stationary points of the most general 2HDM potential. In particular, we prove that charge-breaking and neutral vacua never coexist in 2HDM and establish conditions when the most general explicitly CP-conserving Higgs potential has spontaneously CP-violating minima. Our analysis avoids manipulation with high-order algebraic equations.Comment: 33 pages, 6 figures; v3: corrected a flaw in the proof of proposition 1

    Colliding particles carrying non-zero orbital angular momentum

    Full text link
    Photons carrying non-zero orbital angular momentum (twisted photons) are well-known in optics. Recently, it was suggested to use Compton backscattering to boost optical twisted photons to high energies. Twisted electrons in the intermediate energy range have also been produced recently. Thus, collisions involving energetic twisted particles seem to be feasible and represent a new tool in high-energy physics. Here we discuss some generic features of scattering processes involving twisted particles in the initial and/or final state. In order to avoid additional complications arising from non-trivial polarization states, we focus here on scalar fields only. We show that processes involving twisted particles allow one to perform a Fourier analysis of the plane wave cross section with respect to the azimuthal angles of the initial particles. In addition, using twisted states one can probe the autocorrelation function of the amplitude, which is inaccessible in the plane wave collisions. Finally, we discuss prospects for experimental study of these effects.Comment: v2: 24 pages, 2 figures; merged with arXiv:1101.1630 and matches the published versio

    Properties of the general NHDM. II. Higgs potential and its symmetries

    Full text link
    We continue our analysis of the general N-Higgs-doublet model and focus of the Higgs potential description in the space of gauge orbits. We develop a geometric technique that allows us to study the global minimum of the potential without explicitly finding its position. We discuss symmetry patterns of the NHDM potential, and illustrate the general discussion with various specific variants of the three-Higgs-doublet model.Comment: 28 pages, 9 figures; v2: introduction rewritten, matches the published versio

    Measuring the phase of the scattering amplitude with vortex beams

    Full text link
    We show that colliding vortex beams instead of (approximate) plane waves can lead to a direct measurement of how the overall phase of the plane wave scattering amplitude changes with the scattering angle. Since vortex beams are coherent superpositions of plane waves with different momenta, their scattering amplitude receives contributions from plane wave amplitudes with distinct kinematics. These contributions interfere, leading to the measurement of their phase difference. Although interference exists for any generic wave packet collision, we show that using vortex beams dramatically enhances sensitivity to the phase in comparison with non-vortex beams. Since the overall phase is inaccessible in a plane wave collision, this measurement would be of great importance for a number of topics in hadronic physics, for example, meson production in the resonance region, physics of nucleon resonances, and small angle elastic hadron scattering.Comment: 18 pages, 5 figures; v2: introduction rewritten and expanded, matches the published versio
    • …
    corecore